
 Journal of Visual Languages and Computing (1996) 7 , 361 – 375

 A Visual Database Environment for Scientific Research

 R EX M . J AKOBOVITS , L ARA M . L EWIS , J AMES P . A HRENS , L INDA G .
 S HAPIRO , S TEVEN L . T ANIMOTO AND J AMES F . B RINKLEY

 Department of Computer Science and Engineering , University of Washington , Seattle ,
 Washington 9 8 1 9 5 U .S .A .

 Received 1 April 1 9 9 6 ; revised 2 5 July 1 9 9 6 ; accepted 1 3 August 1 9 9 6

 This paper describes a visual database environment designed to be used for scientific
 research in the imaging sciences . It provides hierarchical relational structures that
 allow the user to model data as entities possessing properties , parts and relationships ,
 and it supports multi-level queries on these structures . A schema constructor interface
 allows users to define for each structure , not only its components , but also its
 visualization , which is built from its components using graphical primitives . Finally ,
 an experiment management subsystem allows users to construct and run computa-
 tional experiments that apply imaging operators to data from the database . The
 experiment management system keeps track of the experimental procedures developed
 by the user and the results generated by executing these procedures .
 ÷ 1996 Academic Press Limited

 1 . Introduction

 E XPERIMENTATION with image-related data often involves a number of disjoint
 applications communicating via flat files , each with its own internal data representa-
 tion . This approach leads to extraneous processing , as data is marshalled in and out of
 the various structures and of the file system . Furthermore , it tends to result in an
 unwieldy collection of cryptic disk files that the researcher must manage , making it
 dif ficult to browse and correlate the intermediate data .

 The Database Environment for Vision Research (DEVR) is an entity-oriented
 scientific database system designed to facilitate experimentation with image-related
 data . It provides a framework in which computer vision researchers may structure
 their internal data to promote interoperability between applications . DEVR frees the
 researcher from having to manage data at the file system level , and it enables the user
 to formulate sophisticated queries across all aspects of the experimental process .

 DEVR of fers a dynamic data definition language for modeling vision data . It
 includes an application programmer’s interface , which allows users to integrate the
 database with existing image processing and vision applications . DEVR’s query
 processor supports a wide range of multi-level queries on complex user-defined types .
 A schema constructor interface allows users to define for each structure , not only its

 This work was supported by the National Science Foundation under grant No . IRI-9116809 and by
 NASA / CESDIS under subcontract No . 555-21 .

 1045-926X / 96 / 040361 1 15 $25 . 00 / 0 ÷ 1996 Academic Press Limited

 R . M . JAKOBOVITS ET AL . 362

 components , but also its visualization , which can be built from its components using
 graphical primitives . Finally , an experiment management subsystem allows users to
 construct and run computational experiments that apply imaging operators to data
 from the database . A prototype DEVR system was implemented on top of the Object
 Database Environment (ODE) [1] .

 2 . Related Work

 Work on pictorial information systems has been going on since the late 1970s . For an
 introduction , see the text by S . K . Chang [6] . A relatively recent system of his is
 discussed in S . K . Chang et al . [5] . Two other researchers , N . S . Chang and Fu [7]
 were also early players who developed a pictorial query language . Later , Brolio et al .
 [3] built a system called ISR (Intermediate Symbolic Representation) that interfaces to
 the symbolic structures used in their (VISIONS) vision system . At the same time ,
 Goodman [11] developed a persistent object store for Lisp that provided integrated
 programming language and data management support for development of knowledge-
 based vision systems . A general visual information system , VIMSYS (Visual Informa-
 tion Management System) , was developed by Gupta et al . [12] .

 Some of the recent work on pictorial databases has been targeted at particular
 scientific applications . In the biomedical area , Cardenas and Chu at UCLA [16] [8]
 have developed the KMED (Knowledge-based Multimedia Medical Distributed
 Database System) to help manage general medical research projects . In the area of
 Earth Sciences , Katz and Stonebraker [18] developed an information system to
 ef ficiently manage global change data . Hachem et al . [13] and Smith et al . [29] have
 both developed scientific database management systems for managing GIS data .

 A number of image database systems that concentrate on retrieval of images by
 content have been developed . In general systems , Kato [14] [17] has developed an
 experimental database system called ARTMUSEUM that is intended to be an
 electronic art gallery . Niblack’s research group at IBM Almaden has developed a
 general-purpose image database system called QBIC (Query by Image Content) [20]
 that has become a commercial product . QBIC allows retrieval of images by color ,
 texture , and the shape of image objects or regions . Pentland’s group at MIT developed
 the Photobook system [21] , a set of interactive tools for browsing and searching
 images and image sequences . The philosophy behind Photobook is to use several
 dif ferent semantics-preserving representations for images and to provide the user with
 retrieval tools based on these representations , rather than trying to provide a single
 representation and matching procedure . In addition to these general systems , a
 number of specific kinds of image matching have been developed [9 , 15 , 19 , 22] .

 DEVR is a general scientific database system motivated by the needs of researchers
 in the imaging sciences . It is closest to the work of Hachem et al . [13] and that of
 Smith et al . [29] in trying to provide a full information system , rather than a
 ‘query-by-content’ facility . It dif fers from both of these in providing a simple , but
 general , model in which scientific users , particularly those in the imaging sciences , can
 express their data . We now define the data model and give examples of its use in an
 image analysis application .

 A VISUAL DATABASE ENVIRONMENT 363

 3 . The HRS Model

 Almost every imaging system uses a dif ferent format for its data . There are several
 major image formats and countless higher-level data structures used in imaging . An
 important question in our work is how to structure this data in order to simplify the
 work of the researcher and to promote a degree of interoperability of software for
 dif ferent groups . The relational model has been very popular in business database
 systems , but has fallen short in meeting the needs of scientific researchers . The newer
 object-oriented systems are much more flexible , but what they provide is so general
 that structuring data is still a programming art . We have designed a system that lies
 somewhere between the two , an entity-oriented , hierarchical , relational database
 system . The building block of the system is the hierarchical relational structure (HRS)
 which comes from the relational data structure of Shapiro and Haralick [25] that was
 designed for use in a spatial information system and extended for use in relational
 matching algorithms [4] .

 In the HRS model , every entity in the system (images , regions , edges , etc .) is
 described by a schema consisting of three components : properties , parts , and relations .
 The properties component of a schema is a table of attribute definitions ; each entry
 specifies an attribute label and declares its type . Properties may be either atomic (i . e .
 float , integer , string , etc .) , or complex types (i . e . full HRS entities) . Instances of the
 HRS defined by a schema will have attribute values that correspond to the entries in
 the schema’s property table . These values record global information about the entity ,
 such as the number of rows in an image , or the slope of an edge . An example of a
 complex property is the histogram of an image .

 The parts component consists of any number of part sets , which are collections of
 other entities in the system . This allows the user to represent the natural decomposi-
 tion of spatial and image data in an organized hierarchy . For example , a View – Class
 HRS may be defined to contain an Images part set , which in turn may contain an
 Edges part set . The relations component consists of attributed relations over the parts
 of that entity . Each relation is made up of a set of tuples . A tuple consists of an
 ordered list of pointers to entities in the parts sets , and an optional list of attributes .
 For example , the Image HRS may contain a proximity relation , whose tuples consist
 of pairs of edges and a numeric attribute describing the distance between them .

 Type checking is performed dynamically as HRS objects are constructed , ensuring
 that the attributes , parts and relations of each entity are consistent with the type
 constraints imposed by the schema . The schema model could be extended to support
 more flexible constraints , such as two-way relationship pointers , numeric range
 restrictions , set cardinality requirements and set membership conditions .

 4 . Example Application : TRIBORS

 The HRS data model has been used successfully to support a number of imaging
 applications including robot vision and medical imaging . Figure 1 shows some of the
 data types used in the Triplet - Based Object Recognition System (TRIBORS) [23] , an
 application that uses synthetic images to create probability models for use in 3D
 object recognition . TRIBORS was originally implemented without the HRS model

 R . M . JAKOBOVITS ET AL . 364

 Figure 1 . Schemas from the TRIBORS Application

 A VISUAL DATABASE ENVIRONMENT 365

 or the DEVR system , using arbitrary data structures and ASCII file dumps to
 maintain data between executions . The input image files were scattered in various
 directories maintained by the system’s designer . The HRS model easily supported the
 TRIBORS data types , and DEVR’s application programmer’s interface was used to
 link TRIBORS with the database . DEVR can now maintain the input images ,
 synthetic images and intermediate data structures (such as extracted edges) .

 TRIBORS recognizes 3D objects from 2D images . Each 3D object has a full 3D
 CAD model and a set of 2D view classes . Each view class represents a region of
 contiguous views on the viewing sphere in which a specific set of features is visible . In
 the DEVR data model , each 3D object to be processed by TRIBORS is represented
 by a Tribors – Object HRS , which consists of a 3D model and a set of view classes .
 The Model – 3D HRS is decomposed into faces , edges and points . Each View – Class
 HRS has properties defining its region on the viewing sphere and a part set of its
 visible 3D edges . The View – Class HRS also contains part sets of real and synthetic
 images of the object taken from viewpoints in the specified viewing region . These in
 turn reference viewable gray scale images . TRIBORS generates a probability model
 for each view class , which is stored as a relation in the HRS for that view class . Each
 tuple of the probability relation consists of a triple of edges from the model , with
 attributes describing the orientation of the segments and the frequency of the triple’s
 occurrence within the training images for that view class . The actual CAD models
 from TRIBORS experiments have been successfully imported into DEVR , including
 multiple view classes consisting of over a hundred images and their corresponding
 spatial entities .

 5 . Multi-Level Queries

 The system supports multi-level queries based on recursive constraint trees . A set of
 HRS entities of a given type is filtered through a network of constraints correspond-
 ing to the parts , properties and relations of that type . Queries can be constructed
 interactively with a menu-driven interface , or they can be generated dynamically
 within a vision application using the programmer’s interface . Query objects are
 persistent and reusable . Users may keep libraries of query templates , which can be
 built incrementally , tested separately , cloned and linked together to form more
 complex queries .

 5 .1 . Queries over Properties and Parts

 A query is modeled as a recursive constraint tree , which consists of a root node that
 includes references to zero or more children , each of which is a recursive constraint
 tree . The components of a root node are its schema type , property constraints , part
 constraints and relational constraints .

 The schema type is one of the atomic or user-defined schemas in the database ; this
 will be referred to as the base schema . A set of entities of this type is returned by the
 execution of the query . The property constraints correspond to the properties of the
 base schema . Since property values can be either atoms or HRS structures , property

 R . M . JAKOBOVITS ET AL . 366

 Figure 2 . Query on a set of view classes in TRIBORS

 constraints can be either Boolean expressions that operate on atomic values or
 subqueries that operate on HRS structures . The subquery constraints form new nodes
 of the recursive constraint tree .

 The parts section of an HRS contains zero or more sets of entities , each of which is
 an HRS . Each part set has a schema that covers all the parts in that set . As for
 non-atomic properties , parts constraints are subqueries that operate on HRS
 structures . However , while a property constraint is concerned with a single HRS , a
 parts constraint is concerned with a whole set of HRSs of the same type . Thus , in
 addition to the subquery that expresses a constraint over HRSs of a given type , there
 is also a cardinality requirement that indicates how many entities in the returned parts
 set must satisfy this constraint . Cardinality may be expressed as an absolute number
 or as a percentage of the entities to be returned .

 To illustrate the expressive power of the DEVR query model , Figure 2 shows the
 following query that was tested on the TRIBORS application : ‘ For all objects whose
 models have at least 20 surfaces , find the view classes whose latitude falls between 45
 and 60 . ’

 The following are further examples of queries that a vision researcher might apply
 to the TRIBORS database :

 1 . Find all 3D edges of a particular model .
 2 . Find all models that have a face whose border has more than six 3D edges .
 3 . Find all 3D edges of a particular model that share an endpoint with a given 3D

 edge .
 4 . Find all view classes associated with a particular model .
 5 . Find all view classes (of any object) that contain more than 15 model edges .
 6 . Find all real images associated with view classes whose models have more than

 25 3D edges .
 7 . Find all edge triplets of the real probability model of a selected view class that

 have frequency less than 0 . 3 .
 8 . Find all models that have at least 20 real images associated with a single view

 class .

 A VISUAL DATABASE ENVIRONMENT 367

 Users may construct queries interactively via the menu-driven Query Specification
 Interface , which prompts for Boolean constraint expressions and sub-query links . In
 addition , a graphical interface has been designed , in which queries will be visualized as
 a network of icons that can be manipulated with a mouse .

 The query object acts as a filter on a candidate set of HRS entities of the return
 type , yielding a result set which is the subset of those candidates satisfying every
 constraint in the query . The system provides a Set class which enables the user to
 store the results of queries for further processing and browsing . The Set class includes
 facilities for iterating over its members and maintaining local indexes . To test whether
 a candidate entity satisfies a constraint , a depth-first , recursive traversal of the
 constraint tree is performed . Each constraint in the tree is applied to the correspond-
 ing node of the candidate entity , whose components must satisfy the conditions of
 that constraint . If all nodes of the constraint tree are satisfied , a pointer to the
 candidate entity is inserted into the result set .

 5 .2 . Advanced Queries

 The relations section of an HRS contains zero or more attributed relations over tuples
 of parts . These relations form a structural description [26] of the entity represented by
 the HRS in terms of its parts and their inter-relationships . Two relational descriptions
 can be compared to produce a numeric quantity called the relational distance [28] .
 Queries involving the relations must take in an instance of an HRS and return the set
 of HRSs whose relational distance satisfies a specified constraint . This ability to find
 good matches for structural descriptions of entities has been used extensively in our
 computer vision research [27] [4] . It leads us to consider which general matching
 capabilities would be appropriate .

 Atomic property constraints in DEVR are standard Boolean expressions that could
 be applied to data in any relational database system . Non-atomic property constraints
 invoke subqueries ; this ability is part of any object-oriented database system . Parts
 constraints not only invoke subqueries , but also consider the question of how many
 entities in a parts list must satisfy a constraint . Relational constraints allow a form of
 structural matching that could be used to retrieve images according to their content .
 As indicated in the related literature , there are now many dif ferent algorithms for
 retrieving images by content , using distance measures based on color , texture , shape
 and (in a few cases) relationships among extracted regions . The usual form of a query
 in these systems is to give the system an image and ask it to return matching images
 from the database according to a particular distance measure and acceptability
 threshold .

 In order to add full query-by-image-content to the DEVR system , the form of the
 queries must be generalized . Boolean expression constraints involve comparison of
 atomic values . We would like to be able to compare any two structures according to
 an arbitrary built-in or user-provided function . The function could compare two
 images , two relational structures or two sets of scientific data . The query must allow
 the user to specify the image or other structure to be matched , the function that does
 the matching , and a Boolean constraint that the result must satisfy . For example ,
 suppose that there is a function called Histogram - Distance that inputs two images in
 KHOROS vif f format and returns a real-valued similarity measure . Suppose that the

 R . M . JAKOBOVITS ET AL . 368

 user has defined a schema called gray - scale - image that has one property called
 image - data whose value is a KHOROS vif f format image . Suppose that the user
 wants to retrieve all instances of gray - scale - image whose image - data value is similar
 to a particular KHOROS vif f format image called test - image . Then in a query whose
 base type is gray - scale - image , the user would enter a constraint associated with the
 image - data property such as :

 Histogram - Distance (test - image , *) , 5 . 0

 Conceptually , this tells the system to use Histogram - Distance to compare test - image
 to each image referenced by the image - data field of a gray - scale - image entity and to
 return all gray - scale - image instances that satisfy the constraint . In a real system that
 stores hundreds or thousands of images , comparing an input image to the entire
 database is impractical . Most standard database systems use indexing mechanisms such
 as B-trees and hash tables to avoid large searches . Standard indexing mechanisms do
 not , however , extend to image content . Berman [2] has developed a method for
 organizing a database of images based on a known image-distance metric and a
 corresponding retrieval method that is able to eliminate many images from considera-
 tion based on their precomputed distances to a set of index images . We are now
 working on the extension of this technique to allow queries that express image
 distance as a combination of multiple distance measures . These kinds of queries are
 being implemented in current research , but are not yet part of the DEVR system .

 6 . Visualization Construction

 The DEVR human-computer interface is composed of several graphical tools with
 which the user can access and manipulate dif ferent aspects of the database . The main
 window of the system can be thought of as a toolbox which provides the user access
 to these tools via a menu . Each graphical tool produces its own window with its own
 particular visual interface . A subset of these tools forms the needed components for
 the visualization subsystem of DEVR . These include the Schema Constructor , the
 Graphic Editor within the Schema Constructor and the Instance Browser . The
 following sections describe the process of defining an HRS schema , defining graphical
 elements to associate with it , creating the graphical elements and finally , browsing
 instances of the schema and its graphical elements .

 6 .1 . Schema Construction

 Through the HRS Schema Constructor , the user can create and modify new schemas
 for his own HRSs . The HRS schema creation process allows the user to add , modify
 and delete properties , parts and relations within the schema . New HRS schemas can
 copy the properties , parts and relationships from other HRS schemas . Once the user
 has finished defining a new HRS schema , he can add it into the database where it can
 be shared by all users . After an HRS schema is entered into the database , it may only
 be modified or deleted if no instances of it exist .

 A VISUAL DATABASE ENVIRONMENT 369

 Figure 3 . The DEVR Schema Constructor and Graphic Editor

 Since DEVR is intended for a wide group of users , many of whom are not
 comfortable with programming , we provide a graphical user interface to facilitate user
 input . The names of new properties , parts and relationships are typed in by the user ,
 but almost everything else can be specified through a selection process . The type of
 each property , part and relation can be an atomic type (i . e . integer , real , character
 string) , another HRS , a union of HRSs , a list or multi-dimensional array of one of
 these types , or an undefined schema marker .

 Figure 3 (left side) illustrates the process of defining the HRS Line Segment
 Structure . Two properties , Image – From and Number – of – Segments ; one part , Seg-
 ments ; and three symmetric relations , Proximity , Parallel and Collinear , have been
 defined . When adding a new relation to the schema of an HRS , the system brings up a
 window allowing the user to specify a name for the relation and to create , modify
 and / or delete two types of information : the tuple elements over which the relation
 holds and the attributes of the relation . The user selects tuple element types from the
 types found in the parts list . If the order of the tuple elements is insignificant , the user
 can mark the relation as symmetric . When adding tuple elements and attributes , other
 windows appear for specifying their names and types . Once the user has the
 properties , parts and relations of an HRS schema defined , he / she can use the Graphic
 Editor within the Schema Constructor to define graphical elements that are associated
 with the schema .

 R . M . JAKOBOVITS ET AL . 370

 6 .2 . Graphical Elements

 In a strict object-oriented model , one might expect each object (or entity) to contain a
 method for displaying itself . We have found this approach to be limiting in several
 ways . First , some entities may require several visualizations and / or the data to be
 visualized may span multiple entities . Therefore , having a single visualization routine
 for each entity is inadequate . Second , as mentioned earlier , the visualizations that a
 user will want to create are highly dependent on the domain of his / her data and the
 techniques used to process and / or analyse it . Thus , it would be dif ficult , if not
 impossible , to create a set of predefined visualization methods that would suit every
 user’s needs in every situation . This forces the user to write his / her own visualization
 routines , which is precisely what we are trying to avoid .

 For these reasons , we decided that instead of having a canned visualization routine
 for every desired visualization type , we would provide the user with graphical
 building blocks or primitives that she could combine to form desired visualizations .
 We refer to such visualizations as ‘graphical elements’ . Once a user has defined the
 properties , parts and relationships of a new HRS schema , she can define graphical
 elements for the schema via the graphic editor within the Schema Constructor . The
 graphic editor window appears beside that of the Schema Constructor to allow easy
 interaction . Figure 3 (right side) shows the Graphic Editor .

 The graphical element creation process begins by specifying the name and
 background color of the graphical element . Along the right side of the editor are icons
 representing each of the available graphical primitives . In the current system there are
 only four primitives : sets of points , sets of line segments , images and relational graphs .
 These four graphical primitives were chosen as a small sample set to fit the needs of
 our sample HRS schema sets . We believe that these primitives will serve well for a
 variety of vision applications , but additional graphical primitives can be added in the
 future .

 In Figure 3 , a graphical element , named ‘Prox / Col’ , with a black background color
 is being created for the HRS Line – Segment – Structure . Currently , ‘Prox / Col’
 contains a single graphical primitive of type relational graph , which illustrates the
 proximity and collinear relations among the line segments . Another graphical element ,
 ‘Segments’ , has previously been defined for HRS Line – Segment – Structure .

 The user creates a graphical element by selecting the desired graphical primitives .
 Each graphical primitive has a corresponding window . The window prompts the user
 for the source of the data needed to produce instances of the graphical primitive , and
 the user can also select colors , patterns , labels and symbol types . In this phase of the
 definition , the user can select various properties , parts and relations of the current
 HRS schema from which data for the graphical primitives is to be retrieved . He / she
 can also follow links in the HRS schema to other schemas that it contains and select
 properties , parts and relations from these other HRS schemas . Thus the visualization
 for a complex HRS can be made up of graphical elements from many dif ferent
 portions or levels of its structure .

 When a user creates a graphical element , it is stored as a metadata property of the
 HRS schema . Visualizations for the instances of an HRS can now be created using the
 stored metadata and a set of graphical primitive creation routines . Graphical element
 instances are not created at the time that the corresponding HRS schema instance is

 A VISUAL DATABASE ENVIRONMENT 371

 created . Instead , graphical element instances will be lazily created the first time a user
 requests to view them . This approach can save a significant amount of unnecessary
 time and space when the user does not need to view the graphical elements of each
 HRS instance . After a graphical element instance is created , it will be stored along
 with the HRS instance .

 6 .3 . Instance Browsing

 After the user has defined a set of HRS schemas and created instances with actual
 data , he will be able to view the data via the Instance Browser . a The DEVR browsing
 environment was designed using the metaphor of having piles or stacks of HRS
 entities on one’s desk . There are three stacks aligned in a horizontal fashion . Each
 stack can hold up to three HRS entities . Unlike stacks on one’s desk , however , the
 environment ensures that the stacks stay neat and orderly and provides the user with
 an easy and intuitive way to manipulate the HRS entities . Above the stacks is a header
 or title bar which contains various tools for loading and manipulating dif ferent
 working sets of HRS entities .

 Figure 4 shows the window design of the Instance Browser , in which the user is
 viewing three HRS Gray – Scale – Image entities and the associated HRS Line –
 Segment – Structure entities . The Gray – Scale – Image entity , ‘f1’ , has its graphical
 element , ‘Gray scale’ , displayed in the first viewing box . The Line – Segment –
 Structure , entity , ‘f1 . lines’ , has its graphical element , ‘Segments’ , displayed in the
 second viewing box . While each of these graphical elements only contain a single
 graphical primitive , this is not always the case .

 7 . Experiment Management

 An experiment management system provides computer-based support for scientific
 research work [30] . Interviews with imaging scientists working on complex remote
 sensing and medical analysis problems identified the following desirable properties for
 such a system :

 $ Exploratory—an experiment management system should facilitate the scientist’s
 exploration of dif ferent algorithmic solutions and help the scientist to identify
 their ef fects on the results .

 $ Responsive—algorithm results should be returned as quickly as possible ,
 particularly if the scientist is waiting for them .

 $ Satisfies User Requirements—an experiment management system should schedule
 and execute algorithms based on the scientist’s requirements for resource
 utilization and algorithm execution . For example , the scientist should be able to
 specify which results are most important , what processing resources are available
 and how to utilize these resources .

 $ High-Level—the interface for an experiment management system should let the

 a The Instance Browser has been designed but not implemented .

 R . M . JAKOBOVITS ET AL . 372

 Fi
gu

re
 4

 .
 T

he
 D

E
V

R
 I

ns
ta

nc
e

B
ro

w
se

r

 A VISUAL DATABASE ENVIRONMENT 373

 scientist specify a high-level description of his algorithms and requirements . An
 experiment management system should provide support for scientists who are
 not computer experts .

 $ Organized—an experiment management system should record and organize the
 scientist’s computer-based research work for later retrieval . This increases the
 scientist’s productivity .

 DEVRs experiment management system has these properties . The main com-
 ponents of this system are (1) a visual programming environment , (2) the underlying
 scientific database , (3) a scheduler for networks of workstations , and (4) an executor
 that runs the experiments and keeps track of results . The database itself is used to
 organize and store information about program graphs and results .

 The scientist uses a data-flow based visual programming environment (currently
 Khoros 2 . 0 [24]) to specify his algorithms in a declarative manner . This makes it easy
 to explore dif ferent algorithms by interactively modifying the data-flow program
 graph . The visual programming environment interacts with the database and the
 experiment management system using special input and output operators . The
 database input operator inputs the results of database queries . The database output
 operator stores program graph results in the database along with associated metadata .
 This metadata contains information about how and when a result was created .
 Queries on this metadata can later be used to retrieve specific results .

 Many scientists have access to a network of workstations that can be used for
 parallel execution of computationally-intensive experiments . In our system , the
 scheduler and executor automatically schedule and execute a program graph on a
 network of workstations based on the scientist’s requirements for resource utilization
 and algorithm execution . The requirements are specified declaratively as constraints ,
 which can be either requirements or preferences . Requirements must hold in the
 resulting schedule , whereas preferences are used to guide a search for an optimized
 schedule .

 8 . Conclusions and Future Work

 DEVR provides a unified data model , a powerful query processing facility and an
 associated experiment management system . The HRS data model promotes inter-
 operability between applications and provides a practical framework in which data
 may be shared among researchers . A scientific user can design schemas for entities
 that include the graphics necessary for their visualization . The query facilities allow
 the construction of powerful , multi-level queries to retrieve the hierarchical struc-
 tures . The inclusion of an experiment management system makes a total package in
 which scientists can develop , run and analyse the results of their experiments .

 A prototype DEVR system has been designed and partially implemented . Schema
 construction and multi-level querying are operational , but the browser for visualiza-
 tion of results was not implemented due to time and funding constraints . The
 experiment management system uses the visual programming environment of Khoros
 2 . 0 , a public domain visualization package , and interfaces to the database system
 through special storage / retrieval icons .

 The tools developed for DEVR are a good start toward the development of a full

 R . M . JAKOBOVITS ET AL . 374

 image database system including retrieval of images and related structures according
 to their content . We intend to continue our work in this direction .

 References
 1 . R . Agrawal & N . H . Gehani (1989) ODE (Object Database and Environment) : the

 language and data model . In : Proceedings of the ACM - SIGMOD 1 9 8 9 , Association for
 Computer Machinery , pp . 36 – 45 .

 2 . A . Berman (1994) A new data structure for fast approximate matching . Technical Report
 1994-03-02 , Dept . of Computer Science , University of Washington , Seattle , Washington .

 3 . J . Brolio , B . A . Draper , J . R . Beveridge & A . R . Hanson (1989) ISR : A database for
 symbolic processing in computer vision . In : IEEE Computer , 22 , 22 – 30 .

 4 . O . Camps , L . G . Shapiro & R . M . Haralick (1992) Object Recognition using prediction
 and probabilistic matching . In : IEEE / RSJ International Conference on Intelligent Robots
 and Systems , IEEE , pp . 1044 – 1052 .

 5 . S . K . Chang , C . W . Yan , D . C . Dimitrof f & T . Arndt (1988) An intelligent image database
 system . In : IEEE Transactions on Software Engineering , SE1 (5) , 681 – 688 .

 6 . S . K . Chang (1989) Principles of Pictorial Information Systems , Prentice Hall , Englewood
 Clif fs , NJ .

 7 . N . S . Chang & K . S . Fu (1981) Picture query languages for pictorial data-base systems . In :
 IEEE Computer 14 , 23 – 33 .

 8 . W . W . Chu , A . F . Cardenas & R . K . Taira (1993) A knowledge-based multimedia medical
 distributed database system—KMeD . In : Proceedings of the Workshop on Advances in Data
 Management for the Scientist and Engineer , (W . Chu , A . Cardenas & R . Taira , eds)
 (WADMSE) .

 9 . A . Del Bimbo , P . Pala & S . Santini (1994) Visual image retrieval by elastic deformation of
 object sketches . In : IEEE Symposium on Visual Languages , 216 – 223 .

 10 . S . Ghandeharizadeh , V . Choi , C . Ker & K . M . Lin (1992) Design and Implementation of
 the Omega Object - based System . Computer Science Dept ., University of Southern
 California .

 11 . A . Goodman , R . M . Haralick & L . G . Shapiro (1989) Knowledge-based computer vision :
 integrated programming language and data management system design . In : IEEE
 Computer , 22 , 43 – 58 .

 12 . A . Gupta , T . Weymount & R . Jain (1991) Semantic queries in image databases . In :
 Proceedings of the IFIP 2 nd Working Conference on Visual Database Systems , pp . 204 – 214 .

 13 . N . I . Hachem , M . A . Gennert & M . O . Ward (1993) The Gaea system : a spatio-temporal
 database system for global change studies . In : Proceedings of the Workshop on Advances in
 Data Management for the Scientist and Engineer (W . Chu , A . Cardenas & R . Taira , eds)
 (WADMSE) .

 14 . K . Hirata & T . Kato (1992) Query by visual example . In : Advances in Database
 Technology — EDBT ’92 Berlin : Springer-Verlag , pp . 56 – 71 .

 15 . C . E . Jacobs , A . Finkelstein & D . H . Salesin (1995) Fast multiresolution image querying .
 In : Computer Graphics Proceedings , Annual Conference Series . Addison-Wesley , Reading ,
 PA , pp . 277 – 286 .

 16 . A . Joseph & A . F . Cardenas (1988) PICQUERY : a high-level query language for pictorial
 database management . In : IEEE Transactions on Software Engineering , 14 , (5) .

 17 . T . Kato , T . Kurita , N . Otsu & K . Hirata (1992) A sketch retrieval method for full color
 image database . In : 1 1 th International Conference on Pattern Recognition , IEEE Computer
 Society Press , Los Alamitos , CA , pp . 530 – 533 .

 18 . R . H . Katz , D . A . Patterson , M . R . Stonebraker , C . Grautier , M . D . Dahlin , J . A . Fine &
 E . L . Miller (1993) Design of a large capacity object server supporting Earth System Science
 researchers . In : Proceedings of the Workshop on Advances in Data Management for the
 Scientist and Engineer (W . Chu , A . Cardenas & R . Taira , eds) (WADMSE) .

 19 . P . M . Kelly & T . M . Cannon (1995) Query by image example : the CANDID approach . In :
 SPIE Vol . 2 4 2 0 Storage and Retrieval for Image and Video Databases III , International
 Society for Optical Engineering , Bellingham , WA , pp . 238 – 248 .

 A VISUAL DATABASE ENVIRONMENT 375

 20 . W . Niblack , R . Barber , W . Equitz , M . Flickner , E . Glasman , D . Petkovic , P . Yanker , C .
 Faloutsos & G . Taubin (1993) The QBIC project : querying images by content using color ,
 texture , and shape . In : Proceedings of the SPIE Conference on Storage and Retrieval for
 Image and Video Databases , International Society for Optical Engineering , Bellingham ,
 WA , pp . 173 – 181 .

 21 . A . Pentland , R . W . Picard & S . Sclarof f (1993) Photobook : tools for content-based
 manipulation of image databases . In : Technical Report 255 , MIT , Media Lab .

 22 . R . W . Picard & T . P . Minka (1995) Vision texture for annotation . In : Technical Report 302 ,
 MIT , Media Lab .

 23 . K . Pulli (1995) Tribors : a triplet-based object recognition system . Technical Report
 95-01-01 , Department of Computer Science and Engineering , University of Washington ,
 Seattle , WA .

 24 . J . R . Rasure & C . S . Williams (1991) An integrated data flow visual language and software
 development environment . In : Journal of Visual Languages and Computing , 2 , 217 – 246 .

 25 . L . G . Shapiro & R . M . Haralick (1980) A spatial data structure . Geo - Processing 1 , 313 – 337 .
 26 . L . G . Shapiro & R . M . Haralick (1981) Structural descriptions and inexact matching . In :

 IEEE Transactions on Pattern Analysis and Machine Intelligence , PAMI-3 , 504 – 519 .
 27 . L . G . Shapiro , J . D . Moriarty , R . M . Haralick , & P . G . Mulgaonkar (1984) Matching

 three-dimensional objects using a relational paradigm . In : Pattern Recognition 17 , 385 – 405 .
 28 . L . G . Shapiro & R . M . Haralick (1985) A Metric for comparing relational descriptions . In :

 IEEE Transactions on Pattern Analysis and Machine Intelligence , PAMI-7 , 90 – 94 .
 29 . T . R . Smith , J . Su , D . Agrawal & A . El Abbadi (1993) MDBS : a modeling and database

 system to support research in the Earth Sciences . In : Proceedings of the Workshop on
 Advances in Data Management for the Scientist and Engineer (W . Chu , A . Cardenas & R .
 Taira , eds) (WADMSE) .

 30 . E . Soloway & W . Martin (1993) Computer-based Support for Scientific Data Analysis . In :
 Proceedings of the Workshop on Advances in Data Management for the Scientist and
 Engineer (W . Chu , A . Cardenas & R . Taira , eds) (WADMSE) .

